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Abstract—Using the theory developed in Part I of this work [1], the linear transformations of

thermodynamic fluxes and forces are comprehensively investigated for the coupled mass and energy transfer

with the finite propagation speed c,. The cases considered comprise transformations that are well known in

the classical irreversible thermodynamics. Various non-Onsager phenomenological equations and a basic set

of hyperbolic equations, equations (52) and (53), describing muiti-component thermal diffusion are obtained.

The generality of a thermodynamic approach based on the so-called relaxation entropy is shown and
simplifications of the theory for the known special cases are discussed.

NOMENCLATURE I, Jg entropy fluxes defined by equations {54)
and (56), respectively;
J; vectors of densities of diffusive mass
i i —1:
a, = ——, thermal diffusivity; fluxes, | <1< n—1;

oC, J, =col(d, J;... 4, . J,), column matrix
containing all independent fluxes;

C,, i ; :
P specific heat :?y J*, new matrix of fluxes as a result of
C,, =cn= [6(—7‘1‘7}] , transformation of vector J, equation (6);
H; T J. =col(J,, J,... J,_;), column matrix
matrix of mass capacities ; containing n—1 independent mass
c 'z b . fluxes;
’ = Ci = 7, thermostatic L,L*,  Onsager matrix and new Onsager ma-
. . trix, respectively ;
o matrix of capacities; L, L,  submatrices of matrix L* connected with
) new mgtrlx of capacities; isothermal diffusion and thermal dif-
Cos = ,/{G/p), constant speed of the second fusion, respectively;
sound wave propagation; Ly, = )72, Onsager coefficient for heat
Chs = —C,T*, thermal capacity conduction
~1 . ’
. [0h/6T. ]p.y; - . . M, molar mass;
D* generalized diffusivity matrix, equation n unit normal vector:
(45); ¢ ific stafi ’
> e s, 8, specific static entropy and totalen
D,, matrix of mass diffusivities; rzspectively' Py alentropy,
D , ¢ . s « . ’.
' cgjalflﬁn:;nz étnx of thermal - diffusion So partial specific entropy of ith com-
’ . ponent, §; = s, — S;;
g, ?ogi%?i :tfh Zl’;ear' rigidity ; As,, entropy increment at y = const.;
h’- I;ertial . eciﬁpy ’ thal £ ith As,, relaxation entropy of unit volume;
v p Specific enthalpy o ith com- P,Q, matrices of transformations (6) and (7);
ponent; h; = h, — h; P, pressure ;
Ah,, increment of enthalpy h at y = const.; T, temperature ;
Ah, deviation of enthalpy; enthalpy incre- ¢ time: ’
ment on wave front; ’ ’ e~ B —u 1
Jpds vector of density of diffusive energy flux u, = 001( . T Lo T"‘l, -).
and pure heat flux, respectively; T
J7, new energy flux, heat flux J} = J,, in column matrix of original transfer
particular; potentials;
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u*, _ CO;(*“H A 1 )
T T T T
column matrix of new transfer
potentials;

V. = p ', specific volume of the medium
investigated ;

w, barycentric velocity ;

X, = col(grad Fa

. T
grad FnT et grad 1 )
T T
column matrix of classical thermody-
namic forces;

X*, new column matrix of classical thermo-
dynamic forces;

Vi mass fraction of ith component ;

Y =col(y,.¥;... ¥y~ ) column matrix of
independent mass fractions;

z. =col (), V3 -+ Yu-1» 1) column matrix
of thermodynamic state of mixture at p
= const.;

z*, transformed state z;

V2, Laplace operator;

A, deviation, increment ;

g, entropy source;

7, dynamic viscosity ;

Py mass density:

T, 7%, ordinary and transformed matrix of re-
laxation coefficients, respectively;

T, diffusional part of pressure tensor;

Ui chemical potential of component i, ji; =
Fn— By

Al thermal conductivity.

Subscripts

0, undisturbed state;

h, heat;

ij. clements i and j of column matrix J;

m, mass;

n, component in normal direction;

p. constant pressure;

q energy in coupled process;

r, relaxation ;

S, entropy ;

T, temperature or thermal diffusion.

Superscripts

', total entropy;

T. transpose matrix ;

*, new fluxes, forces, capacities and On-

sager matrices;

tIt should be kept in mmd that an expanded (i.e. non-
matrix) form of relaxation entropy is

DI

jml k=t a=x vz

(2G,py) Coed ju Sk

in the Cartesian coordinates x, y, z. Note an analogous
structure of similar bilinear expressions. Remember also that
the multiple temperature relaxation is not considered in the
present theory.
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- 1. reverse matrix ;
0, deviatoric part of tensor

INTRODUCTION

In ParT L of this work [ 1], the fundamental equations
for the coupled heat, mass and momentum transport
with a finite speed of propagation ¢, {1, 2] have been
derived on the basis of the non-equilibrium thermody-
namics. As a result of the analysis of coupled processes
of isobaric mass and energy transport in the “second
sound™ shock wave front, the following equations have
been obtained:

Jin” = pOCOA.“is { “
Jon = PoColh. (2)

gno
— ¥, ete, of. Fig. 2in [1])

These equations relate the diffusive fluxes of mass
and energy to the increments of concentrations y; and
enthalpies i on the wave front. Using equations (1}and
(2) in the well known thermodynamic formula for the
entropy deficiency caused by non-equilibrium 3, 4], it
was shown [1] that the total specific entropy of the
disturbed side of the shock wave front 5| is related 1o

(Ay; = ¥y

the classical entropy s, (¥, ;... v, | . fy)as
, JiC J .
$p= sy g Ve )+ 2[)1(;, {3)
where J = col(J,,J,...d, . J)and G, = p,clis the

modulus of shear rigidity.

The term with the fluxes in equation (3) is called the
relaxation entropyt. The matrix C™' --a reciprocal of
the so-called capacity matrix [2}—is the same as the
matrix of the second differential of entropy [4] ex-
pressed as the function of the variables y; and A

1t was postulated [ 1] that equation (3) pertains also
to a situation in the interior of the disturbed region and
it was shown that this formula leads to a certain non-
classical expression for entropy production, from
which the following non-Onsager, phenomenological
equation results

LC™'dJ

J - e = , (4
T Lgradu (4}

where

du= 1( gtz
gradu = col| gra T

and L is Onsager’s matrix. The matrix

= (5)

found in equation (4) is the matrix of the relaxation
coefficients. For pure heat conduction a well known
formula, t, = a/cj, is obtained from equation (5)
Equation (4) holds in the region of validity of relation
(3).
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It was shown in [ 1] that for linear transformations
of thermodynamic fluxes and forces

J* =PJ,
X*=QX, X =gradu,

(6)
M

where J* and X* are new fluxes and forces, the
following rules of transformations of the basic matrices
L, C and 1 should be adhered to:

L* = PLP", (8)
C* = PCPT, {9}
™ =PP L (10)

These rules ensure the invariance of formulae expres-
sing, among other things, the relaxation entropy of unit
volume, i.e. entropy of diffusive fluxes

_Jc'

A —_—
=6

(11)
and the contribution of the relaxation entropy to the
classical entropy source

JTCdd
G di

As, = (12)

An important fact was emphasized that equations
(4), (11) and (12) are due to local non-e¢quilibrium in
the continuum and also that the assumption-of a local
equilibrium according to the classical irreversible
thermodynamics simplifies the theory to that of
Onsager’s one. See also some remarks about the range
of the theory at the end of this paper.

In this paper, just as in [ 1], non-reacting fluids and
solids will be investigated under the conditions of
negligible compressibility. Examples of transfor-
mations, that can be found in the classical non-
equilibrium thermodynamics [5] and that will be used
here, will be given for the case of a finite speed of
propagation. As a result, several equivalent ex-
pressions for the non-classical entropy source and
non-Onsager phenomenological equations will be
obtained. Because of the variety of expressions derived,
it will be possible to select the best formula for specific
application which usually resolves itself into finding
and solving the hyperbolic-type partial differential
equations that describe the transport potential fields.
Finally, simplifications of the theory that lead to the
well known specific cases will be discussed. It will be
shown that the present theory is consistent with the
results given in literature for the familiar specific cases
and it also provides a consequent generalization that
ensures a uniform description of coupled processes
with a finite wave speed.

+ Some special findings (that can be derived from the
present theory as special cases) were obtained earlier in the
author’s work [2]. These are only connected with binary
systems and not supported by thermodynamic analysis.
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2. TRANSFORMATIONS LEADING TO THE
HEAT FLUX J,

In the conventional theory of mass and energy
transfer, it is a typical approach not to use the energy
flux J, and the mass fluxes J, ... J,_; (in [1] all the
formulae were derived for this set of fluxes), but,
leaving unchanged the mass fluxes (J; = J¥), touse a
heat flux which is defined in [5] as:

n—1

B=3=J,-YhJ =3+ Y (h,—h)J. (13)
1 1
We will now develop in detail the theory of this
transformation]. Denoting the differences h, — b,
1, — It; etc., respectively as &, fi; etc. and treating J, as a
new flux (ie. J, = J¥), the transformation analyzed
can be written as:

J¥=1J, i=12...n—1, (14)
=3 =J,+ k. (15)

The above equations enable one to <xpress the
transformation matrix P, equation {6), as:

1 0 ... 0
P={0 1 .0 (16)
R, h, 1

Before we proceed to describe the new matrices L*
and C*, let us consider an interesting interpretation of
transformation (14) and (15) from the viewpoint of the
phenomena occurring in the wave front. Multiplying
equations (1) and (2) by a unit normal vector n, we find

(17
(18)

where Ay; = y;o — y; and Ah = h, — h, represent the
increments of the undisturbed concentration y;, and
enthalpy h, in relation to the disturbed concentration
y;y and enthalpy h,, respectively (only the latter
variables are used in the final equations for the process
[1)).

Using equations (17) and (18) in (15) and employing
the well known formula for the enthalpy differential at
a constant pressure, we find that

3, = I = pocanoC,AT,

Ji = potonody;
J, = pocompAh

(19)

which shows clearly that the isobaric flux J,, is related
with a non-equilibrium temperature increment. When
p is not constant, this flux is related with the enthalpy
increment without a change in concentration. If we let
Ah, to represent this increment, then the anlogues of
equations (17) and (18) for the new fluxes and forces
will have the following form

J¥ = peonoAy,, (20)

21

Thus, it is found that the transformation converts
the primary equations (17) and (18) into similar
equations that operate with the increments of certain
new variables of state. The presentation of the results is

Jy = J, = poconpAh,.
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concise when the matrix notation is used. The set of ?§ i
equations (17) and (18) thus becomes

J = pyconyAz, (22)

where J = cold,,...d, . J)andz = col(y, ...y, ..
h). As a result of the transformation analyzed we get

J¥ = pycongAz*, (23) —

where J* = col(J, ... J, .. J,) and z* = col(y, ...
Vr-1»h,). Equations (22)and (23) express a certain kind

of covariancy of fluxes J and J* with the variables of =
state z and z* respectively. ’j

Let us now discuss the transformation of matrices L
and C. In the case of equations (14) and (15) the
Onsager kinetic matrix L transforms into a certain
matrix L* the form of which is obtained using the P
matrix, equation (16), in the general equation (8). The
explicit form of the new matrix L* will not be given
here, because it is the same as that in the classical |

Onsager non-equilibrium thermodynamics [5]. Ra- by
ther we shall discuss the capacity matrices C and C*, o
the specific form of which has an effect on the Sl ;f
relaxation entropy and its contribution to the entropy S
source, equations {11) and (12). But since the recipro- =

cals of C and C* appear in these equations, in what
follows we shall use the C~ ' and C*~' matrices.

Equation (9) yields :‘;C N
C+1l=—piTC P L. (24) .
For the P matrix, equation (16), we have ’ :_
1 0 : 0 n jff*“
P =10 1 e 0 (25) o
- T T T P

- —h I Py

+
1 0 | —h, =
PT=Q=10 1 .. -F (26) —
00 B — =
and the matrix C~* has the following form {compare Lj
with equation (17) in [1]}: 'T :
Cc! = (27) z
- ﬂl o /11 ! ol 21 ':;:‘ b~ '('::
O — Sl | A <o -
< T> ( T | ( T S

ayl yays3. . h €y, ))‘1.\'1 h I oh )1‘, N LTN

j
@ Ili /,(‘: é{Z’\ : (A ‘[{l' B
T) < T | T _ [\' . -
I SR F ) oon | (o) =TE S

S e R B BN e

- R |
<(’;T 1> ((T Iv) | <(—;TI\)
¥y Jopeoon VOV L ow b\ CR ]

The differential (6T ~'/2h), . . in equation (27) is
equal to —1/C,T>

Using equations (24-27), we get a symmetrical
matrix (28).

P ''C

o
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Accounting for the differential relationship

-G ®) & @
éa J, oa oc J,\0a/,
and
51 - (.‘?,h_> , 172 = — <6_h) , etc.,
yi/r 2 /r
the matrix (28) can be simplified to the form
(:*‘-1 £ (30)
N i ! i
iR A !
(J:) (l) Lo
ay1 Vs Vuoy Yz To¥1 o ¥us :
|
N |
Flacd Flact !
N S
6))1 Tovs. ¥y ayz To¥ioo Vet 1
_______________ [
i 0 0 I —1IAC,TY) i

The advantage of using the heat flux J} = J, is
clearly visible here. A characteristic feature of the
matrices C* and C*~! is the disappearance of terms
that express the thermostatic coupling. It is known
from the classical thermodynamics that this property
is a physical result of the statistical independence of
fluctuations of certain state variables [3]. In our case
this concerns the y, and h variables. The C*~ ! matrix is
especially simple in the case of a binary system because
it is a diagonal matrix, see also {2].

The relaxation entropy transforms, with the form of
equation (11) being preserved, see [1]. Therefore, on
using equation (30), we get

JIC1J JATCrIg*
26 26

As, =
1 n—1n-1 a% 1

o e = JJi~—~—J2:l. (3t

5 5 2 (5 ), 2 e ] o

In addition, for the shock-wave front we have
As, = %AZTC“AZ = fz’-Az*Tc*" Az
PYad B .
Ay Ay, — —— Al?
(e ), o e

"l i 32
=§[Z A%AywAT"‘Ah)], 2
i=1

f5s

i=1j=

{because Ah, = C,AT for const. p). The last expression
indicates that z* = col(y,y, ... Y.y, h,) is the new
vector of state. The new transport potential vector has
the following form :
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« = col( P Bra Py 1
" _COI( T T T>’

where the subscript T indicates that the potentials /i,
are taken at a constant temperature. The new ex-
pression for As, can be easily obtained directly from
the original expression after a simple change of
variables (i.e. even without resorting to the C and C*
matrices). Indeed, writing the former expression for As,

[1] as
n—-1 o
P w 1
=Y AZ Ay, + A=Ak 33
As 2%;»:1 T T } (33)

and making use of the thermodynamic relation
P H;

T
(OT ) = hi
Va1

and also expressing the increment Ah in equation (33)
by the increments AT and Ay;, we get

(34)

B

i
p n-ln—l( T)
As, =2 — Ayay,
2[2 L \G,; ), vy

i=1

n—1 F
+ Py
le (6T 1>}"

r~1
-y kidT'lAyé+CpATAT“‘}
iy

[nzl n—1 (3-;})
i=1 }zl (
which is equivalent to (32). The conclusion which can
be drawn from the above is that the entropy of new
diffusive fluxes, equation (31), can be obtained in a less
formal way by making an adequate transformation of
the state variables in the classical thermostatic ex-
pressions known from the fluctuation theory, equation
{32), and making use of the analogy between the
expressions of the (31)- and (32)-type (the transfor-
mation matrix of the z; variables is also the P matrix,
see [1]).

This approach has the advantage that usually it is
quite easy to find the increments of new potentials u*.

In our case,
AuTn 1 _l_
T T

Ary
* = col| ~——,.
a ( z
which is in agreement with the following relationship
resulting from the definition of capacities

Au* = C* 1 Az (36)

for the matrix (30). The same result is also obtained
from the general equation which expresses the trans-
formation of the increment of transport potentials [ 1]:

Au* = QAu = P77 Au. 37

C,(AT)?
——T——} (35
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Indeed, since

By .
Au =col(A—~—..‘AT 1),
- T )
then on the basis of relations (26) and (37)
v - 1 oo - —
Ky - u
AL R AT fri
T ! 4 T
i - B2
Aut = | A2 - RAT' | = | ALE
u T 2 T (38)
AT ! AT !

according to the well known thermodynamic relation

Y Hoi AT

A=A — by

T T i Tz H
see e.g. [ 5]. Knowing the new transport potentials, i.e.
the components of the u* vector, it is easy to write an

adequate equation expressing the non-classical en-
tropy source in terms of new fluxes and forces

C* tdJ*
¥ = J*T adu* + — m_M”)
(gradu G dr
" oy
= ¥ J;-grad T+ J,grad 77!
i=1
J*Tc*AldJ*

(3%9)

The phenomenological matrix equation resulting
from the non-negativeness condition of o* is§

L*C* -1 dJ*

J* = L*gradu* + — {40)

G dt

The forms of equations (39) and (40) are often too
general to be applied in practice. Sometimes it is more
convenient to use alternative equations, {49)-(51),
described in Section 3, where the specific properties of
the transformed capacity matrix are taken advantage
of.

3. RELAXATION MATRIX, GENERALIZED DIFFUSIVITY
MATRIX AND DESCRIPTION OF STATIONARY
THERMAL DIFFUSION

We will now investigate at length the relaxation
coefficient matrix T*, which corresponds to the trans-
formed fluxes J*. The matrix t* depends on two,
already discussed, matrices L* and C*. Because of the
characteristic form of the transformed capacity matrix
(C=Ch =0fori= 1,2,3...n~1)and for the sake
of a better elucidation of the role of mass fluxes J; in
relation to the heat flux J,, we shall separate in the
C*~! matrix, equation (30), a sub-matrix

_ L

. AT

§In the same way, the phenomenological equations (49)
and (50, given later, result from the alternative form of a*,
equation (51}

STANISLAW SIENIUTY(Z

which is related to the isothermal transport of mass.
Furthermore, in the C*~! matrix, we shall take into
account the null sub-matrices (column and row) that
describe the lack of thermostatic couplings. As a result,
we shall write the C* ' matrix in the following form

In the same way we shall formulate the Onsager
symmetrical matrix L* separating in it the sub-
matrices L, Ly and the one-element sub-matrix L, =
AT?. These are related to diffusion, thermal diffusion

and thermal conductivity, respectively. We shall get
Lm ! l’l

L = [t
Lt

(42)
T2 :

Because of this, the relaxation coefficient matrix has
the following structure

.
Cc.T?
LCe L
P D L SR )
ped 3 e
C,

But the sub-matrix —L,, C,'/p is a mass diffusivity
matrix D,,, according to the well known definition, see
e.g. [5]. Also 2/pC, is the thermal diffusivity, a. That is
why the expression {43) defines a certain generalized
diffusivity matrix D* such that

D*
L* = - {44y
Cn
and
D LJ_
" CaTiC
D*=|— — =~ — S} {43)
LG

(the matrix D* is usually non-symmetric).

Equation (44) constitutes a simple and important
matrix generalization of expression t, = a/c3, which is
well known in the theory of pure heat conduction. On
the other hand, equation (45) expresses the general
diffusivity matrix including effects of isothermal mass
diffusion, thermal mass diffusion as well as diffusion of
heat. Itis possible in this equation to define the column
matrix L,/pC,T? as a matrix which characterizes the
thermal diffusion quantitatively. However, the ele-
ments of this matrix would be given in kgm?*s~ ' J~!
and such a definition would be less suitable for
practical applications. That is why, we shall define the
thermal diffusion matrix in another way, i.e. as

— LT

e— 46
= (46)

Because of this, every element of this matrix will
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have a typical dimension of m? s~ !, This definition is
sometimes used also in the classical non-equilibrium
thermodynamics [6]. After making use of {46) in
equations (44) and (45), we get

|
|
I C,TL. (47)
t
|

Equation (47) is applied to the general phenomen-
ological equation {40), which with the use of (36) is
transformed to

D* dJ*
* = —pD* ¥ — 48
J pD* gradz 2 dr 48)

It is taken into account that J* = col(J,,, J,), where J,
= col(J,,J,...J,-,)and that grad z* = col(grad y,C,
grad T), where y = col(y,, ¥3 ..., ¥n_ 1) As aresult, we
get the basic set of phenomenological equations in the
form, which is most suitable for direct applications:/

J,= —pD,grady — g]—;lgrad T

D
_Dnddy _ Dr ddy
g 4t g C,T dt
J,=pTDLC ' grady — Agrad T
T
T 1 i
, TDIC;' i, /N

cd de pCeh dt’

Note, that this set can also be derived from the entropy
source (39) expressed as

¢ = 37 (grag & 4 En 9
g Jm(gradT+ T
1 dl
-1 __ _h >
+Ji (gradT GC,T? d:>/°’ b

which clearly shows the role of inertial forces. The
importance of equations such as (49}, (50) and (51) lies
in the fact that they operate exclusively with the
commonly known quantities (c3 = G/p).

The first of the two equations (49) and (50) give a
matrix presentation of the diffusion of n—1 com-
ponents, the second expresses the diffusion of heat.
These equations describe a coupled transport of mass
and heat, with a finite wave speed. When ¢, —» o they

I Using the Gibbs-Duhem equation, it is possible to bring
the first (classical) term of the RHS of equation (50} to the
form commonly used in literature

sl
—-pTDIA i rad
PLD;, 3y grady,

where the matrix

A={[4,]= (%,-&-?)fot Lk=1,2...n-1,

n

see e.g. [6].
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turn into the well known equations of the classical
theory of multi-component thermal diffusion.

For the special case of a two-component system and
with the use of a different thermal diffusion coefficient
Dy, such that D, = D;y,y,T, equations (49) and (50)
simplify into equations (86) and (87), which were given
in our earlier work [2].

4, HYPERBOLIC EQUATIONS OF MULTI-
COMPONENT THERMAL DIFFUSION
Acting on the both sides of equations (49) and (50)
with the divergence operator, assuming that the coef-
ficients in these equations are constant and making use
of the equations of the conservation of mass and
sensible heat, we get the following set of hyperbolic

equations:
_ _“L)
chdr?
&*T

d
p—y=po(V2y
pD; 2
— VT — ), (52
M T( c(z)d£2> (52)

dt

dTr e d?y
Pcp“&? = — pTD;C.! (VZY - Eg“&?;‘)

42T
A VAT - .
+ /( 2 dtz) (33)

Equations (52) and (53) express the Galilean repre-
sentation of simultaneous heat and mass transfer with
finite wave speed.

For a stationary medium, these equations include
the d’Alembert operators and not (as it is in the
classical equations) the Laplace operators. The pre-
sence of the former in the partial differential equations
of change is a rule if the relaxation effects are to be
accounted for.

It is expected that equations (52) and (53) will
describe the mass and heat transport better than the
classical ones, especially in the case of strong non-
stationarities, e.g. during travel of sound waves
through the fluid when the thermal diffusion is being
intensified. The relaxation terms should also be impor-
tant in the application of these equations to dispersed
media and non-Newtonian fluids that are described by
the Maxwell fluid model,

5. TRANSFORMATIONS LEADING TO ENTROPY
STREAMS
We will give here an outline of the formalism using
other fluxes and forces. Leaving the definitions of mass
fluxes unchanged, we shall be using here the entropy
flux J, instead of the original energy flux J,. It is
generally known that

n n-1
J, = T-’(Jq -3 ;thk)= T-1 ( Y ﬁka+Jq>.
7 k=1

k=1
{(54)
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On the ground of equations (17), (18) and (54), the new
flux J¥ = J, satisfies the equation:

Jo = poCong As. (55)
i.e. it is directly related to the entropy increment in the
shock wave front.

The flux J, takes an account of the entropy transfer
by diffusion of mass and heat [5]. There is also a
possibility of using the second entropy flux J,,, which is
related exclusively to the diffusion of heat {5]. The flux
J, satisfies the equation

n

Jsh = J,s - Z

k=1

n-1
sdo=Jd,+ Y 3d (56)
k=1

If the situation in the shock wave front is described,
then the stream J, satisfies also the second equation

"

J, = pocono(As =5 s A ) = PoCoyC

- 1

n

{57)

P

Comparison of equations (19) and (57) shows that

STANISLAW SIENIUTY(Z

To this expression there corresponds the following
form of the total entropy source

i Ay Cotdd,
T d—t + 2. 22m) L
h B e )
Jon x (grad InT + —7-1—; ddy | (59
GC, dr |

as well as certain phenomenological equations ob-
tained for the generalized forces appearing in brackets
in equation (59). They can be brought to equations (49)
and (50) if it is taken into account that J, = T~ 1],
and that the already discussed definition of D, is kept.

The transformation of the J_ flux into J, [equation
(54)] corresponds to the following transformation
matrix :

[ 0
0 1 .0
P={ag @ '] (60)

The knowledge of P enables one to find the recipro-
cal of the new capacity matrix C, related with the fluxes

JoJs 0 d, 0 T, We get
B 1 ((E, ) 1 (F,ul‘) 1 ( Iy ) ]
TACyy Joy, T ACyy )y TV s
C =P TC P! = ! (‘#2\) 1((;;2\) ! (‘"/tz)
* T\Cy, /s, T\Cy, /s I\ cs (61)
1 /T 1 /eT B
SENTAR Y -
L T hovo /e Ty, ), N
where

J,, = T~ 'J,. The same conclusions can be drawn from
equations (54), (56) and (13). It means that it would
suffice to substitute J, = TJ,, into all the previous
equations involving J,® to obtain the suitable equa-
tions involving J,. This applies especially to ex-
pressions (31) and (32) for the relaxation entropy
which, after introducing J, and using the mass

capacity matrix
("Hl ” . N -
Crn = |>( 'LI'_" ‘c( yj /)T‘l.

can be written as
Cl”,

1
WilVJIIC;nlJm_
0 1S g ay, - 55
ToT| & Hyi BYi ¢

As, =
=26

¢ Note that the condition of linearity of transformation
makes it necessary to assume T constant in TJ,.

o), 1R

/
g Sy, oL tNp Y2 oo

is Maxwell’s relation. This yields the following ex-
pressions for the relaxation entropy*+ and entropy
source:

1 n— 1o 1 (‘\ﬂv
s=- |3 (=
A\r 2(; l Lu Z T {N,“j )\A N

f=1 j=1

2l eT )2
SR T % (~ ) Jido — Cv]‘ (62)

[ CVilsy

++ Equation (62) can also express the value

Ah,
As, = — —— =
T

as the function of J, and J, on using equations (17} and {35},

;’T | 'S Af Ay, — ATAS )
- Pl



Thermodynamics of coupled heat, mass and momentum transport II

-1

n—1
= | Tt grad g - ——
i;x Jl ‘: grad j; G

i O d_J_T_(aT dJ,
= 6yJ dt G \dy, ) dr

-1

T
- J;- [grad InT +

G
nl 70T\ dJ 1 dJ,
)=+ ==

,.;1 ((7yi>dt GC, dt]
in which the generalized thermodynamic forces (terms
in brackets) contain inertial forces. If G — oo, we get
the classical formula for o

The assumption of linear relations between the
fluxes and generalized forces ensures the non-
negativeness of o, and leads to phenomenological
equations

(63)

n—1 -1

J=3 L, [T“ grad g, +
k=1

n_1 o, dJ; 16T6J}
x . e N
& Oy; dt G dy, dt
T—l
; dinT + —
L,s[gra nT + G
"l oT dJ; 1 dJ;
“Taa ——] (64)
y; dt ~ GC, dt
- T-1
= Z Lis[T‘lgradﬂi + e
6;4, dJ; T7'3T dJ;
z dy, dt ~ G dy, dt
T—l
- L dinT + —
ss[gra nl + G
nloT dJ 1 dJ
“L5 : (65)
1 0y; dr GCp dt

having again well-defined inertial terms. Here, we
make use of the Onsager coefficients and not the
coefficients of diffusion. It is expected that the phenom-
enological equations (64) and (65) will be employed
in the description of highly non-stationary thermoelec-
tric phenomena (the classical counterparts of these
equations [5] should essentially deal with stationary
phenomena).

6. ADDITIONAL REMARKS

Before concluding the discussion of various forms of
phenomenological equations of coupled heat and mass
transfer, it is worthwhile to mention, see [1], that if the
momentum diffusion is accounted, for, then, under the
assumption of small compressibility, the expression for
the relaxation entropy can be generalized into

1
As,=—JTC

_IJ— o o
r=2G T

4GT (66)
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(% is the deviatoric part of the pressure tensor). It was
shown in [ 1] that if the second term of equation (66) is
accounted for, then we get an additional phenomen-
ological equation in which we recognize the Maxwell
equation for a visco-elastic fluid, with the relaxation
time t, = 5/G.

Under the assumption mentioned, the flux transfor-
mations and related phenomenological equations are
little dependent on changes in the pressure tensor.
However, in the case of a compressible fluid, especially
if any chemical reactions take place, the effects of the
second viscosity might be important and the form of
phenomenological equations may become more com-
plicated. Some conclusions on this subject were pre-
sented in [7]. It can hardly be said that this problem is
solved, since the analysis presented in [7] was too
formal, some new coefficients obtained were physically
undefined and only non-reacting fluids were accoun-
ted for. That is why the thermodynamics of transport
phenomena with the finite wave speed, as applied to
compressible fluid in the presence of chemical re-
actions, should be the subject of further works.

7. SIMPLIFICATIONS OF THE THEORY FOR THE
FAMILIAR SPECIAL CASES

Already Natanson [8] expressed the opinion, that
all the relaxation times for the transport of momen-
tum, heat and mass must be interrelated, saying that
“this is an important, yet still an unknown law”. In the
present theory the relations between the relaxation
coefficients come as a consequence of the unity of
transport phenomena in the second sound wave, in
which the propagation of momentum, heat and mass
with the same speed ¢, takes place.

Maxwell’s equation of a visco-elastic fluid, with the
relaxation time 7, = 7/G, is one of the specific
relations, known earlier, to which the present theory is
simplified. Let us discuss other cases. The literature
data deal mainly with the perfect gas.

For isothermal binary diffusion the present theory
gives 1, = pD/G. Hence, for the perfect gas 7, =
pD/P—the result already known to Natanson [8].
Naturally, for pure heat conduction, we get the well
known formula 1, = a/c3.

Lebon [7] made use of Enskog’s iteration method
[9, 10}, commonly used in the kinetic theory of gases,
for obtaining expressions for entropy and entropy flux
with the accuracy to the 2nd-order terms. Considering
the transport of heat and momentum in the case of a
one-component monatomic perfect gas, this author
concluded that the 2nd-order correction for the en-
tropy density is a sum of the term containing the
square of the heat flux J? and the square of the
deviatoric part of the momentum flux 7:7, with the
coefficients of proportionality equal, respectively, to

,_ =P
5TP?

(67)

Y= (68)
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We will show that the present theory, equation (66),
simplifies to relations (67) and (68). In the special case
analyzedJ = J,,G = Pand C, = 5/2 RM ™', where R
is gas constant. Thus, the coefficients at the squares of
the fluxes. resulting from equation {66), are

c! 1 M I

;

=

26~ T 2C, TP T SRT*P  5TP?
(69)
and
I 0
a6t = a7 7o)

in complete agreement with [7]. The thermal re-
laxation time can be dertved from the general equation
(5) as

: :
Tp= — e = (7H)

. C = 3 C 72
4= 50C = 3nC, (72)
That 1s why, on the grounds of (71) and (72)
3In
BE 5 (73)

which agrees with [8, 11} and {12].

As can be scen, the theory presented resolves itself
into the special cases known from literature. At the
same time it gives many new results for non-ideal
multi-component media in which there are coupled
transport phenomena. This fact confirms the concept
adopted here, that the basis quantities characterizing
the relaxation effects, can, in principle, be defined on
the ground of thermodynamics alone [see equation
{33) which expresses the square approximation of the
deviation of entropy from equilibrium] as well as
confirms equations (14-16) of Part I describing the
entropy of relaxation.

The effectiveness of thermodynamic approaches
exploiting entropy deficiency function, equation (33),
has been lately confirmed also in other applications,
for instance, in research on thermodynamic stability
[4] and qualitative analysis of the properties of flow
process trajectories [16] as well as in some optimi-
zation problems [17]. Regardless of the generality of
the results reached here and the definitiveness of all the
new coefficients and functions characterizing relax-
ation effects, it is necessary to bear in mind that the
accuracy of an approximation, such as in equation
(33), can prove unsatisfactory in the case of large
disturbances Ay, and Ah. Also the static character of

+1 For barycentric velocity v+ const, some controversies
regarding the so-called principle of material frame-
indifference may arise, see for instance [7, 15]. But the
opinions on this subject are still not clear [ 15] whereas we are
interested mainly in the case when v = const.

STANISLAW SIENIUTY(Z

the € matrix in equations (11)and (12) can prove to be
an approximation, like the one in the theory of
electromagnetic infinite lines, where in the case of a
small energy dissipation the proportionality of in-
ductance to the reciprocal of capacitance is accepted
[18-20] (it is a result of the fact that the elec-
tromagnetic field carries along the same amount of
magnetic and electric energy). As a result, in the most
complicated cases it might prove to be necessary to use
a matrix. which differs from C and which does not have
a thermostatic character.}}
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THERMODYNAMIQUE DES TRANSPORTS COUPLES DE CHALEUR, DE MASSE ET DE
QUANTITE DE MOUVEMENT AVEC UNE VITESSE FINIE D’ONDE: II-EXEMPLES DE
TRANSFORMATIONS DE FLUX ET DE FORCES

Résumé—En utilisant la théorie développée dans la partie I de ce travail [ 1], les transformations linéaires des
flux et des forces thermodynamiques sont exploitées pour les transferts couplés de masse et d’énergie avec une
vitesse finie C, de propagation. Les cas considérés englobent les transformations bien connues de la
thermodynamique classique des phénomeénes irréversibles. On obtient des équations phénoménologiques
différentes de celles d’Onsager et un systéme d’équations hyperboliques (52) et (53) qui décrivent la diffusion
thermique de plusieurs composants. On montre la généralité d’une approache thermodynamique basée sur
I'entropie de relaxation et on discute des simplifications de la théorie pour des cas spéciaux connus.

THERMODYNAMIK DES GEKOPPELTEN WARME-, STOFF- UND IMPULSTRANSPORTS
MIT ENDLICHER WELLENGESCHWINDIGKEIT
II—BEISPIELE FUR TRANSFORMATIONEN VON STROMDICHTEN

UND KRAFTEN
Zusammenfassung—Unter Verwendung der in Teil I dieser Arbeit [ 1] entwickelten Theorie werden lineare
Transformationen von thermodynamischen Stromdichten und Kriften umfassend fiir den gekoppelten
Massen- und Energictransport mit endlicher Ausbreitungsgeschwindigkeit ¢, untersucht. Die betrachteten
Fille enthalten Transformationen, welche in der klassischen irreversiblen Thermodynamik gut bekannt sind.
Verschiedene phinomenologische nicht-Onsager-Gleichungen und ein Standardsatz hyperbolischer
Gleichungen, Gleichung (52) und (53), welche die Mehrkomponenten-Thermodiffusion beschreiben, werden
erhalten. Es wird die Allgemeingiiltigkeit eines thermodynamischen Ansatzes, welcher auf einer sogenannten
Relaxationsentropie beruht, gezeigt und Vereinfachungen der Theorie fiir bekannte

Spezialfille erértert.

TEPMOJMHAMUKA B3AUMOCBS3AHHBLIX IPOLIECCOB MEPEHOCA TEILIA,
MACCBHI 1 UMITVJIbCA C KOHEYHOI CKOPOCTBIO PACIIPOCTPAHEHUS BOJIHBI.
Il — MPUMEPBI NPEOBPA30OBAHHA MOTOKOB U CUN

Aunoraums — C nioMoupio paspaGoraunoit B wactu 1 Hacrosutedt paGoTwr [1] TEOPHH NOIPOOHO
HCCNIEAYIOTCS JIMHENRHEBIE Npeo6pa3oBaHNs TEPMOAHHAMMIECKHX OTOKOB H CHII /1 B3aMMOCBSA3aHHbIX
TPOLECCOB MEPEHOCa MACCHl H YHEPIAH, NPOTEKAIOLUX C KOHEMHOMN CKOPOCTbIO ¢o. PaccMaTpuBaroTcst
npeoGpa3oBaHus, XOPOLIO M3BECTHbIE W3 KJIACCHYCCKOH TEPMOAMHAMHKH HEOGDAaTHMBIX NDOUECCOB.
TTosny4ensl pa3nu4HEIE HEOH3ATEPOBCKHE (BeHOMEHOIOTHYECKHE YPABHEHHS H OCHOBHAS CHCTEMaA THnep-
Gonueckux ypasnenui, (52), (53), onHchiBarollHe MHOrOKOMIOHEHTHYIO Aupdy3uio Tenna. [TokalaHa
O6IIHOCTL TePMOAMHAMHYECKOTO MOIX0Ad, OCHOBAHHOTO Ha TaK HA3BIBAEMON SHTPOMHH PENaKCAUMH,
H 06CYXKIar0TCs YIPOLICHHS TEOPHH HA M3BECTHBIE YACTHBIE CTyYaM.
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