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Abstract-Using the theory developed in Part I of this work [l], the linear transformations of 
thermodynamic fluxes and forces are comprehensively investigated for the coupled mass and energy transfer 
with the finite propagation speed cg. The cases considered comprise transformations that are well known in 
the classical irreversible therrn~~~~~s. Various non-~nsager ph~omenologicai equations and a basic set 
ofhy~r~)icequations,equations (52) and (53), describing multi-component thermal diffusion are obtained. 
The generality of a thermodynamic approach based on the so-called relaxation entropy is shown and 

simplifications of the theory for the known special cases are discussed. 

NOMENCLATURE 

specific heat ; 

T’ 

matrix of mass capacities; 
SZ 

= - thermostatic = Cik au’ 

matrix of capacities; 
new matrix of capacities; 
= ,/(G/p), constant speed of the second 
sound wave propagation ; 
= - C,T2, thermal capacity 
[dh/i?T-‘I,, r; 
generalized diffusivity matrix, equation 

(45); 
matrix of mass diffusivities; 
column matrix of thermal diffusion 
coefficients ; 
modulus of shear rigidity ; 
specific enthafpy ; 
partial specific enthaipy of ith com- 
ponent; gi = h, - hi; 
increment of enthalpy h at y = const.; 
deviation of enthalpy; enthalpy incre- 
ment on wave front; 
vector of density of diffusive energy flux 
and pure heat flux, respectively; 
new energy flux, heat flux Jt = J,, in 
particular; 

J,, Ja 

Jit 

J, 

J*, 

J REV 

L, L*, 

L,, L, 

M, 
n, 
.% St, 

Si, 

4, 
As,, 
f’, Q, 
P, 
T, 
t, 

entropy fluxes defined by equations (54) 
and (I%), respectively ; 
vectors of densities of diffusive mass 
fluxes, 1 < i < n-l; 
= co&J,, J2 . . . J,_ Ir J,), column matrix 
containing all independent fluxes; 
new matrix of fluxes as a result of 
transformation of vector J, equation (6); 
= co&J,, J,... J,_ ,), column matrix 
containing n - 1 independent mass 
fluxes ; 
Onsager matrix and new Onsager ma- 
trix, respectively ; 
submatrices of matrix L* connected with 
isothermal diffusion and thermal dif- 
fusion, respectively ; 
= i,T2, Onsager coefficient for heat 
conduction ; 

molar mass ; 
unit normal vector; 
specific static entropy and total entropy, 
respectively; 
partial specific entropy of ith com- 
ponent, .Fi = s, - si; 
entropy increment at y = const.; 
relaxation entropy of unit volume; 
matrices of transformations (6) and (7); 
pressure; 
temperature ; 
time ; 

column matrix of original transfer 
potentiak; 
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u*. 

v, 

W, 

x. 

column matrix of new transfer 
potentials ; 
= (I~ ‘. specific volume of the medium 
investigated; 
barycentric velocity ; 

= co1 ll” - I’ I grad- -- 
T 

. . . . 

column matrix of classical thermody- 
namic forces : 
new column matrix of classical thermo- 
dynamic forces ; 
mass fraction of ith component ; 
= col(y,..r,... yn ._ ,I, column matrix of 
independent mass fractions ; 
= co1 (J.,. 1’2 . . yn__ ,, k) column matrix 
of thermodynamic state of mixture at p 
= const.; 
transformed state z ; 
Laplace operator; 
deviation, increment : 
entropy source ; 
dynamic viscosity : 
mass density : 
ordinary and transformed matrix of re- 
laxation coefticients, respectively ; 
diffusional part of pressure tensor; 
chemical potential of component i. /ii = 

P” - PI, ; 
thermal conductivity. 

undisturbed state: 
heat ; 
elements i and j of column matrix J ; 
mass; 
component in normal direction; 
constant pressure; 
energy in coupled process; 
relaxation ; 
entropy ; 
temperature or thermal diffusion. 

Superscripts 

-k, 
* 

total entropy ; 
transpose matrix ; 
new fluxes, forces, capacities and On- 
sager matrices : 

t It should be kept in mind that an expanded (i.e. non- 
matrix) form of relaxation entropy is 

in the Cartesian coordinates I, )‘, z. Note an analogous 
structure of similar bilinear expressions. Remember also that 
the multiple temperature relaxation is not considered in the 
present theory. 

- 1. reverse matrix: 
0, deviatoric part of tensor 

IVTRODUCTIO\ 

IN PAR,I. 1 of this work Cl], the fundamental equations 
for the coupled heat, mass and momentum transport 
with a finite speed of propagation c0 [ 1,2] have been 
derived on the basis of the non-equilibrium thermody- 
namics. As a result of the anaiysis of coupled processes 
of isobaric mass and energy transport in the “second 
sound” shock wave front, the following equations have 
been obtained : 

J llnr, = ~),,c<,Ah. (2) 

(Ayi = yiO - yil etc., cf. Fig. 2 in [l]) 

These equations relate the diffusive fluxes of mass 
and energy to the increments of concentrations ri and 
enthalpies h on the wave front. Using equations ( 1) and 
(2) in the well known thermodynamic formula for the 
entropy deficiency caused by non-equilibrium [3,4], it 
was shown [I] that the total specific entropy of the 
disturbed side of the shock wave front s’, is related to 
the classical entropy s,(~,. , J;, 1 ,. h, 1 as 

whereJ =col(J,,J,...J “_,, J,)andG, =~,ciisthe 
modulus of shear rigidity. 

The term with the fluxes in equation (3) is called the 
relaxation entropy?. The matrix C ’ ~a reciprocal of 
the so-called capacity matrix [ZIPis the same as the 
matrix of the second differentia1 of entropy [4] ex- 
pressed as the function of the variables pi and h. 

It was postulated [i] that equation (3) pertains also 
to a situation in the interior of the disturbed region and 
it was shown that this formula leads to a certain non- 
classical expression for entropy production, from 
which the following non-Onsager. phenomenological 
equation results 

(4) 

where 

and L is Onsager’s matrix. The matrix 

7 = _ LCl’ 
G ’ 

(Sl 

found in equation (4) is the matrix of the relaxation 
coefficients. For pure heat conduction a well known 
formula, z,, = a/c& is obtained from equation (5). 
Equation (4) holds in the region of validity of relation 

(3). 
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It was shown in [1] that for linear transformations 
of thermodynamic fluxes and forces 

J* = PJ, (6) 

X* = QX, X = grad u, (7) 

where J* and X* are new fluxes and forces, the 
following rules of transformations of the basic matrices 
L, C and T should be adhered to: 

L* = PLPT, (8) 

c* = PCPT, (9) 

t* = PTP_‘. (10) 

These rules ensure the invariance of formulae expres- 
sing, among other things, the relaxation entropy of unit 
volume, i.e. entropy of diffusive fluxes 

and the contribution of the relaxation entropy to the 
classical entropy source 

As = J’C-’ dJ 
I G dr’ 

(12) 

An important fact was emphasized that equations 
(4) (11) and (12) are due to local non-equilibrium in 
the continuum and also that the assumption,of a local 
equilibrium according to the classical irreversible 
thermodynamics simplifies the theory to that of 
Onsager’s one. See also some remarks about the range 
of the theory at the end of this paper. 

In this paper, just as in [l], non-reacting fluids and 
solids will be investigated under the conditions of 
negligible compressibility. Examples of transfor- 
mations, that can be found in the classical non- 
equilibrium thermodynamics [5] and that will be used 
here, will be given for the case of a finite speed of 
propagation. As a result, several equivalent ex- 
pressions for the non-classical entropy source and 
non-Onsager phenomenological equations will be 
obtained. Because of the variety ofexpressions derived, 
it will be possible to select the best formula for specific 
application which usually resolves itself into finding 
and solving the hyperboIic-ty~ partial differential 
equations that describe the transport potential fields. 
Finally, simplifications of the theory that Lead to the 
well known specific cases will be discussed. It will be 
shown that the present theory is consistent with the 
results given in literature for the familiar specific cases 
and it also provides a consequent generalization that 
ensures a uniform description of coupled processes 
with a finite wave speed. 

: Some special findings (that can be derived from the 
present theory as special cases) were obtained earlier in the 
author’s work [Xl. These are only connected with binary 
systems and not supported by therm~ynami~ analysis. 

2. TRANSFORMATIONS LEADING TO THE 
HEAT FLUX J, 

In the conventional theory of mass and energy 
transfer, it is a typical approach not to use the energy 
flux J, and the mass fluxes J, . . . J,_ 1 (in [1] all the 
formulae were derived for this set of fluxes), but, 
leaving unchanged the mass fluxes (Ji = J:), to use a 
heat flux which is defined in [5] as: 

J~=J~=J~-~~iJ~=J~+~~(~~-~i)J~ (13) 
1 1 

We will now develop in detail the theory of this 
transformation$. Denoting the differences h, - hi, 
p. - pi etc., respectively as & bi etc. and treating J,, as a 
new flux (i.e. J, = J:), the transformation analyzed 
can be written as: 

J: = Ji, i = 1,2...n-1, (14) 

Jh = J: = J, + &Jti (15) 

The above equations enable one to express the 
transformation matrix P, equation (6) as: 

1 0 . . . 0 

P= 0 1 . . . 0 

[ I 

(16) 

%i-ZZ-::T 

Before we proceed to describe the new matrices L* 
and C*, let us consider an interesting interpretation of 
transformation (14) and (15) from the viewpoint of the 
phenomena occurring in the wave front. Multiplying 
equations (1) and (2) by a unit normal vector n, we find 

Ji = P~~~~&Yi (17) 

J, = ~~c~n~A~ (18) 

where Ayi = pi0 - yi, and Ak = h, - h, represent the 
increments of the undisturbed concentration yi, and 
enthalpy h, in relation to the disturbed concentration 
yi, and enthalpy h,, respectively (only the latter 
variables are used in the final equations for the process 

PII 
Using equations (17) and (18) in (15) and employing 

the well known formula for the enthalpy differential at 
a constant pressure, we find that 

J, = Jz = p,c,n,C,AT, (19) 

which shows clearly that the isobaric flux Jh is related 
with a non-equilibrium temperature increment. When 
p is not constant, this flux is related with the enthalpy 
increment without a change in concentration. If we let 
Ah, to represent this increment, then the anlogues of 
equations (17) and (18) for the new fluxes and forces 
will have the following form 

Jr = pc,n,Ayi, (20) 

J: = J, = PoconoAhy (21) 

Thus, it is found that the transformation converts 
the primary equations (17) and (18) into similar 
equations that operate with the increments of certain 
new variables of state. The presentation of the results is 



concise when the matrix notation is used. The set of 
equations (17) and (18) thus becomes 

J = pOcOnOAz, (22) 

where J = col(J,, J, ,.J,)andz = col(Y, . ..Y. ,, 
II). As a result of the transformation analyzed we get 

J* = (~,c,n,Az*. (23) 

where J* = col(J, J, 1, J,,) and z* = col( Y’, 

Y” I, h,). Equations (22) and (23) express a certain kind 
of covariancy of fluxes J and J* with the variables of 

state z and z* respectively. 
Let us now discuss the transformation of matrices L 

and C. In the case of equations (14) and (15) the 
Onsager kinetic matrix L transforms into a certain 
matrix L* the form of which is obtained using the P 

matrix, equation (16), in the general equation (8). The 
explicit form of the new matrix L* will not be given 
here, because it is the same as that in the classical 
Onsager non-equilibrium thermodynamics [S]. Ra- 
ther we shall discuss the capacity matrices C and C*. 
the specific form of which has an effect on the 

relaxation entropy and its contribution to the entropy 
source, equations (11) and (12). But since the recipro- 

cals of C and C* appear in these equations, in what 
follows we shall use the C ’ and C* ’ matrices. 

Equation (9) yields 

c*-1 = p-tTC-1p-1, (24) 

For the P matrix, equation (16), we have 

(25) 

1 0 I-R, 

P-“=Q= 0 1 I:“: I---- I (26) 

00 11 

and the matrix C- 1 has the following form (compare 

with equation (17) in [l]; : 

The differential (8T-‘j?h),., In , in equation (27) is 

equal to - l/C,T’. 
Using equations (24-27) we get a symmetrical 

matrix (28). 
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Accounting for the differential relationship 

and 

ii, = - ($;); ii2 = - (-g);etc., 
the matrix (28) can be simplified to the form 

c*-1 =i 

(29) 

(30) 

1 
-_-_--__----_-_ I_---- 

0 0 1 - I/( CpT2) 
. 1 
The advantage of using the heat flux J: = J, is 

clearly visible here. A characteristic feature of the 
matrices C* and C*-’ is the disappearance of terms 
that express the thermostatic coupling. It is known 
from the classical thermodynamics that this property 
is a physical result of the statistical independence of 
fluctuations of certain state variables [3], In our case 
this concerns the yi and h variables. The C*- 1 matrix is 
especially simple in the case of a binary system because 
it is a diagonal matrix, see also [2]. 

The relaxation entropy transforms, with the form of 
equation (11) being preserved, see [ 11. Therefore, on 
using equation (30), we get 

As = J%-IJ J*TC*-‘J* 
p= . 2G 2G 

In addition, for the shock-wave front we have 

(32) 

(because Ah, = C,AT for const. p). The last expression 
indicates that z* = col(y,y, . . . y,_ 1, h,,) is the new 
vector of state. The new transport potential: vector has 
the following form : 

* - - 
u* = co1 

&I pT2 !-h-l 1 
- - ___ - 

> T'l- T’T’ 

where the subscript T indicates that the potentials i&j 
are taken at a constant temperature. The new ex- 
pression for As, can be easily obtained directly from 
the original expression after a simple change of 
variables (i.e. even without resorting to the C and C* 
matrices). Indeed, writing the former expression for As, 

r11 as 

A~, = f (33) 

and making use of the thermodynamic relation 

^ Pi 
9 0 = 

dT-’ 6 (34) 
Y,...J;-* 

and also expressing the increment A!I in equation (33) 
by the increments AT and Ayi, we get 

,Bi 

Ii-1 

- C hiAT-‘Ayi+C,ATAT-’ i=l 1 

which is equivalent to (32). The conclusion which can 
be drawn from the above is that the entropy of new 
diffusive fluxes, equation (31), can be obtained in a less 
formal way by making an adequate transformation of 
the state variables in the classical thermostatic ex- 
pressions known from the fluctuation theory, equation 
(32), and making use of the analogy between the 
expressions of the (31)- and (32)-type (the transfor- 
mation matrix of the zi variables is also the P matrix, 
see Cl]). 

This approach has the advantage that usually it is 
quite easy to find the increments of new potentials UT. 
In our case, 

which is in agreement with the following relationship 
resulting from the definition of capacities 

Au* = C*-’ Aa (36) 

for the matrix (30). The same result is also obtained 
from the general equation which expresses the trans- 
formation of the increment of transport potentials [l] : 

Au* = QAu = P-lTAu. (37) 



Indeed, since 

then on the basis of relations (26) and (37) 

Au* = 

I 

1 ) = - (38) 

according to the well known thermodynamic relation 

see e.g. [5]. Knowing the new transport potentials, i.e. 
the components of the II* vector, it is easy to write an 
adequate equation expressing the nonclassical en- 
tropy source in terms of new fluxes and forces 

@ = J*' (grad “* + 5*-l !!t? 
1 G dt, 

n- 1 
= 1 Ji grad p+- + Jh * grad T- ’ 

i=l 

J*T'c* - 'dJ* 

+ ~--c-it -I , 
(39) 

The phenomenological matrix equation resulting 
from the non-negativeness condition of u* is5 

L*C* - ’ dJ* 
J* = L* grad u* + --.--G-- -dt-. (40) 

The forms of equations (39) and (40) are often too 
genera1 to be applied in practice. Sometimes it is more 
convenient to use alternative equations, (49)-(51) 
described in Section 3, where the specific properties of 
the transformed capacity matrix are taken advantage 
of. 

3. RELAXATION MATRIX, GENERALIZED DIFFUSWITY 
MATRIX AND DESCRIPTION OF STATIONARY 

THERMAL DIFFUSION 

We will now investigate at length the relaxation 
coefficient matrix r*, which corresponds to the trans- 
formed ftuxes J*. The matrix z* depends on two, 
already discussed, matrices L* and C*. Because of the 
characteristic form of the transformed capacity matrix 
(Cg = C$ = Ofori = 1,2,3...n-1)andforthesake 
of a better elucidation of the role of mass fluxes Ji in 
relation to the heat flux J,, we shall separate in the 
C*- ’ matrix, equation (30), a sub-matrix 

4 In the same way, the phenomenological equations (49) 
and (SO), given later, result from the alternative form of g*. 
equation (5t ). 

which is related to the isothermal transport of mass. 
Furthermore, in the C*-’ matrix. we shall take into 
account the null sub-matrices (column and row-) that 
describe the lack of thermostatic couplings. As a result. 
we shall write the C* _ ’ matrix in the following form 

c*--1 = $41 I 

In the same way we shall formulate the Onsager 
symmetrical matrix L* separating in it the sub- 
matrices L,, L, and the one-element sub-matrix t,!, z- 
/.T*. These are related to diffusion, thermal diffusion 
and thermal conductivity, respectively. We shall get 

r 

Because of this, the relaxation coefficient matrix has 
the following structure 

i4il 

L P : PC, 
J 

But the sub-matrix -L,C; ‘./J is a mass diffusivity 
matrix D,, according to the well known definition, see 
e.g. [5]. Also i./pC, is the thermal diffusivity, u. That is 
why the expression (43) defines a certain generalized 
diffusivity matrix D* such that 

and 

L ----- “. il 

i’ 1 
(the matrix D* is usually non-symmetric). 

Equation (44) constitutes a simn!e and important 
matrix generalization of expression r,, = a/c& which is 
well known in the theory of pure heat conduction. On 
the other hand, equation (45) expresses the general 
diffusivity matrix including effects of isothermal mass 
diffusion, thermal mass diffusion as well as diffusion of 
heat. It is possible in this equation to define the column 
matrix L,/pC,TZ as a matrix which characterizes the 
thermal diffusion quantitatively. However, the ele- 
ments of this matrix would be given in kg rn’ s-. ’ .I‘ 1 
and such a definition would be less suitable for 
practical applications. That is why, we shall define the 
thermal diffusion matrix in another way. i.e. as 

D,. z :;r. 
Because of this. every element of this matrix will 



have a typical dimension of m2 s- ‘. This definition is 
sometimes used also in the classical non-equilibrium 
thermodynamics [6]. After making use of (46) in 
equations (44) and (45), we get 

D*=~*c;=~;~~~_~_$ (47) 

Equation (47) is applied to the general phenomen- 
ological equation (40), which with the use of (36) is 
transformed to 

J* = -pD*gradz* _ D” E. 
c; dt 

(48) 

It is taken into account that J* = col(J,, Jh), where J, 
= col(J,, J, J,_ ,) and that grad z* = col(grad y, C, 
grad T), where y = col( y,, yz . . ., y,_ 1). As a result, we 
get the basic set of phenomenological equations in the 
form, which is most suitable for direct applications:11 

J, = -pD,grady - FgradT 

D, dJ --2 
c; dt 

IX dJfi (49) 
-mC,Tdt 

J, = pTa; C, ’ grad y - i. grad T 

+ Td;C,’ dJ, 

co 
?. dJh. (50) ----z--z-,- 

PC,C, dt 

Note, that this set can also be derived from the entropy 
source (39) expressed as 

(T*= Ji grad!!+C,‘d& 
T G dt > 

+ J, 
1 dJh 

- ___i_- 
GC,T dt 

2 0, (51) 

which clearly shows the role of inertial forces. The It is expected that equations (52) and (53) will 

importance of equations such as (49), (50) and (51) lies describe the mass and heat transport better than the 
in the fact that they operate exclusively with the classical ones, especially in the case of strong non- 
commonly known quantities (ci = G/p). stationarities, e.g. during travel of sound waves 

The first of the two equations (49) and (50) give a through the fluid when the thermal diffusion is being 
matrix presentation of the diffusion of n- 1 com- intensified. The relaxation terms should also be impor- 
ponents, the second expresses the diffusion of heat. tant in the application of these equations to dispersed 
These equations describe a coupled transport of mass media and non-Newtonian fluids that are described by 
and heat, with a finite wave speed. When co + x8 they the Maxwell fluid model. 

11 Using the Gibbs-Duhem equation, it is possible to bring 
the first (classical) term of the RHS of equation (50) to the 
form commonly used in literature : 

5. TRANSFORMA~ONS LEADING TO ENTROPY 
STREAMS 

all 
-pTf)rA L grad y, 

( 1 8Y 

where the matrix 

We will give here an outline of the formalism using 
other fluxes and forces. Leaving the definitions of mass 
fluxes unchanged, we shall be using here the entropy 
flux J, instead of the original energy flux J,. It is 
generally known that 

see e.g. r61. 
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turn into the well known equations of the classical 
theory of multi-component thermal diffusion. 

For the special case of a two-component system and 
with the use of a different thermal diffusion coefficient 
D,, such that d, = D,y,y,T, equations (49) and (50) 
simplify into equations (86) and (87), which were given 
in our earlier work [2]. 

4. HYPERBOLIC EQUATIONS OF MULTI- 
COM~NENT THERMAL DIF~SION 

Acting on the both sides of equations (49) and (50) 
with the divergence operator, assuming that the coef- 
ficients in these equations are constant and making use 
of the equations of the conservation of mass and 
sensible heat, we get the following set of hyperbolic 
equations : 

Equations (52) and (53) express the Galilean repre- 
sentation of simultaneous heat and mass transfer with 
finite wave speed. 

For a stationary medium, these equations include 
the d’Alembert operators and not (as it is in the 
classical equations) the Laplace operators. The pre- 
sence of the former in the partial differential equations 
of change is a rule if the relaxation effects are to be 
accounted for. 
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On the ground of equations (17) (18) and (54), the new 

flux J,* = J, satisfies the equation: 

J,, = pocono As. (55) 

i.e. it is directly related to the entropy increment in the 

shock wave front. 

The flux J, takes an account of the entropy transfer 
by diffusion of mass and heat [5]. There is also a 

possibility of using the second entropy flux J,,, which is 

related exclusively to the diffusion of heat [5]. The flux 

J,, satisfies the equation 

J,S, = J,, -- i skJk = J, + ‘x1 .$Jk. (56) 
A=1 L=l 

If the situation in the shock wave front is described, 

then the stream J,, satisfies also the second equation 

J, = pocono As - is, A_rk ) 
i 

AT 
= pOcOnOCp~‘p (57) 

! 

Comparison of equations (19) and (57) shows that 

To this expression there corresponds the following 
form of the total entropy source 

J,, x ( grad In 7 -- 

as well as certain phenomenological equations oh- 
tained for the generalized forces appearing in brackets 

in equation (59). They can be brought to equations (49) 
and (50) if it is taken into account that J,, = 7-l J, 

and that the already discussed definition of D I‘ is kept 
The transformation of the J,, flux into .I, [equation 

(54)] corresponds to the following transformation 

matrix : 

(60) 

The knowledge of P enables one to find the rccipro- 

cal of the new capacity matrix C, related with the Auxes 

J,. JZ J, ,. J,. We get 

J,, = T- ‘J,. The same conclusions can be drawn from 

equations (54), (56) and (13). It means that it would 
suffice to substitute J, = TJ,, into all the previous 
equations involving J,,’ to obtain the suitable equa- 
tions involving J,,. This applies especially to ex- 

pressions (31) and (32) for the relaxation entropy 
which, after introducing J,, and using the mass 

capacity matrix 

can be written as 

As, zz & I 

‘I Note that the condition of linearity of transformation 
makes it necessary to assume T constant in TJ,,. 

where 

is Maxwell’s relation. This yields the following ex- 
pressions for the relaxation entropy++ and entropy 

source : 

J J _ *!’ 8 \ c 1 * (62) i’ 
ti- Equation (62) can also express the value 

AS, = _ !!; = ;‘!. ‘Ii’ A/j; L\y, - 
- (, I 

ATAs ) 

as the function of J, and J,, on using equations (17) and (55). 
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- J . s grad In T + T-' 
G 

1 
(63) 

in which the generalized thermodynamic forces (terms 
in brackets) contain inertial forces. If G --t a, we get 
the classical formula for 0,. 

The assumption of linear relations between the 
fluxes and generalized forces ensures the non- 
negativeness of Q, and leads to phenomenological 
equations 

J, = “i’ L. tk 
T-‘grRdk 

k 
+ T-’ 

k=l G 

1 

- L. IS grad In T + T-' 
G 

“-’ aT dJ. 
x c --_? 

1 dJ, 

j=l ayj dt +GC,dt 1 
J =“i’,‘_,. s ts T-‘grRd~.+TI-f 

i=l G 

n-1 &ii dJ. T-'dT dJ x 1 -L__ _s 
j=l ayj dr G dyi dt 1 

- L ss grad In T + T-' 
G 

“-’ aT dJ. x ~-~+Z!S 
j=r ayj dt CC, dt 1 

(64) 

(65) 

having again well-defined inertial terms. Here, we 
make use of the Onsager coefficients and not the 
coefficients of diffision. It is expected that the phenom- 
enological equations (64) and (65) will be employed 
in the description of highly non-stationary thermoelec- 
tric phenomena (the classical counterparts of these 
equations [5] should essentially deal with stationary 
phenomena). 

6. ADDITIONAL REMARKS 

Before concluding the discussion of various forms of 
phenomenological equations ofcoupled heat and mass 
transfer, it is worthwhile to mention, see [l], that if the 
momentum diffusion is accounted, for, then, under the 
assumption of small compressibility, the expression for 
the relaxation entropy can be generalized into 

1 1 As, = - JTC-l J - -;:;t 
2G 4GT 

(66) 

(i is the deviatoric part of the pressure tensor). It was 
shown in [l] that if the second term of equation (66) is 
accounted for, then we get an additional phenomen- 
ological equation in which we recognize the Maxwell 
equation for a visco-elastic fluid, with the relaxation 
time 7n = q/G. 

Under the assumption mentioned, the flux transfor- 
mations and related phenomenological equations are 
little dependent on changes in the pressure tensor. 
However, in the case of a compressible fluid, especially 
if any chemical reactions take place, the effects of the 
second viscosity might be important and the form of 
phenomenological equations may become more com- 
plicated. Some conclusions on this subject were pre- 
sented in [7]. It can hardly be said that this problem is 
solved, since the analysis presented in [7] was too 
formal, some new coefficients obtained were physically 
undefined and only non-reacting fluids were accoun- 
ted for. That is why the thermodynamics of transport 
phenomena with the finite wave speed, as applied to 
compressible fluid in the presence of chemical re- 
actions, should be the subject of further works. 

7. SIMPLIFICATIONS OF THE THEORY FOR THE 
FAMILIAR SPECIAL CASES 

Already Natanson [8] expressed the opinion, that 
all the relaxation times for the transport of momen- 
tum, heat and mass must be interrelated, saying that 
“this is an important, yet still an unknown law”. In the 
present theory the relations between the relaxation 
coefficients come as a consequence of the unity of 
transport phenomena in the second sound wave, in 
which the propagation of momentum, heat and mass 
with the same speed c,, takes place. 

Maxwell’s equation of a visco-elastic fluid, with the 
relaxation time 7X = rl/G, is one of the specific 
relations, known earlier, to which the present theory is 
simplified. Let us discuss other cases. The literature 
data deal mainly with the perfect gas. 

For isothermal binary diffusion the present theory 
gives 7d = pD/G. Hence, for the perfect gas TV = 

@/P-the result already known to Natanson [8]. 
Naturally, for pure heat conduction, we get the well 
known formula 7,, = a/c;. 

Lebon [7] made use of Enskog’s iteration method 
[9, lo], commonly used in the kinetic theory of gases, 
for obtaining expressions for entropy and entropy flux 
with the accuracy to the 2nd-order terms. Considering 
the transport of heat and momentum in the case of a 
one-component monatomic perfect gas, this author 
concluded that the 2nd-order correction for the en- 
tropy density is a sum of the term containing the 
square of the heat flux Ji and the square of the 
deviatoric part of the momentum flux r?:it, with the 
coefficients of proportionality equal, respectively, to 
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We will show that the present theory, equation (66) 
simplifies to relations (67) and (68). In the special case 
analyzed J = J,, G = P and C, = 5/2 RM _ ‘, where R 
is gas constant. Thus, the coefficients at the squares of 
the fluxes. resulting from equation (66). are 

C’ 1 M I’ , _.- -.__-= _ ___-.. = - __~~ = r 

2G 2C,T2P 5RT=P UP2 

and 

(69) 

I 1 

4GT 4PT i 

in complete agreement with [7]. The thermal re- 
laxation time can be derived from the general equation 

But for the monatomic gas 

That is why, on the grounds of (71) and (72) 

3rl 
sh = ijp, 

(71) 

(72) 

(73) 

which agrees with [8, 111 and [ 121. 
As can be seen, the theory presented resolves itself 

into the special cases known from literature. At the 
same time it gives many new results for non-ideal 
multi-component media in which there are coupled 
transport phenomena. This fact confirms the concept 
adopted here, that the basis quantities characterizing 
the relaxation effects, can, in principle, be defined on 
the ground of thermodynamics alone [see equation 
(33) which expresses the square approximation of the 
deviation of entropy from equilibrium] as well as 
confirms equations (14-$6) of Part I describing the 
entropy of relaxation. 

The effectiveness of thermodynamic approaches 
exploiting entropy deficiency function. equation (33). 
has been lately confirmed also in other applications, 
for instance, in research on thermodynamic stability 
[4] and qualitative analysis of the properties of flow 
process trajectories [16] as well as in some optimi- 
zation problems [17]. Regardless of the generality of 
the results reached here and the definitiveness of all the 
new coefftcients and functions characterizing relax- 
ation effects, it is necessary to bear in mind that the 
accuracy of an approximation, such as in equation 
(33), can prove unsatisfactory in the case of large 
disturbances Aqli and Ah. Also the static character of 

$3 For barycentric velocity vfconst., some controversies 
regarding the so-called principle of material frame- 
indifference may arise, see for instance 17, 151. But the 
opinions on this subject are still not clear [ 151 whereas we are 
interested mainly in the case when v = const 

the C matrix in equations (1 I ) and ( 12) can prove to be 
an approximation, like the one in the theory of 
electromagnetic infinite lines, where in the case of a 
small energy dissipation the proportionality of in- 
ductance to the reciprocal of capacitance is accepted 
118 201 (it is a result of the fact that the elez- 
tromagnetic field carries along the same amount ol 
magnetic and electric energy). As a result, in the most 
complicated cases it might prove to be necessary to use 
a matrix. which differs from C and which does not have 
a thermostatic character.::: 
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THERMODYNAMIQUE DES TRANSPORTS COUPLES DE CHALEUR, DE MASSE ET DE 
QUANTITE DE MOUVEMENT AVEC UNE VITESSE FINIE D’ONDE: II-EXEMPLES DE 

TRANSFORMATIONS DE FLUX ET DE FORCES 

R&nn&En utilisant la thtorie developpee dans la partie I de ce travail [ 11, les transformations lineaires des 
flux et des forces thermodynamiques sont exploitees pour les transferts couples de masse et d’energie avec une 
vitesse tinie C, de propagation. Les cas consider& englobent les transformations bien connues de la 
thermodynamique classique des phinomenes irreversibles. On obtient des equations phenomtnologiques 
ditTerentes de c&es dOnsager et un systeme d’equations hyperboliques (52) et (53) qui dtcrivent la diffusion 
thermique de plusieurs composants. On montre la generalite dune approache thermodynamique bade sur 

l’entropie de relaxation et on discute des simplifications de la theorie pour des cas speciaux connus. 

THERMODYNAMIK DES GEKOPPELTEN WARME-, STOFF- UND IMPULSTRANSPORTS 
MIT ENDLICHER WELLENGESCHWINDIGKEIT 

II-BEISPIELE FUR TRANSFORMATIONEN VON STROMDICHTEN 
UND KRAFTEN 

Zusammenfassung-Unter Verwendung der in Teil I dieser Arbeit [l] entwickelten Theorie werden lineare 
Transformationen von thermodynamischen Stromdichten und Krlften umfassend fur den gekoppelten 
Massen- und Energietransport mit endlicher Ausbreitungsgeschwindigkeit c, untersucht. Die betrachteten 
Fgille enthalten Transformationen, welche in der klassischen irreversiblen Thermodynamik gut bekannt sind. 
Verschiedene phlnomenologische nicht-Onsager-Gleichungen und ein Standardsatz hyperbolischer 
Gleichtmgen, Gleichung (52) und (53), welche die Mehrkomponenten-Thermodilhtsion beschreiben, werden 
erhalten. Es wird die Allgemeingiiltigkeit eines thermodynamischen Ansatzes, welcher auf einer sogenannten 
Relaxationsentropie beruht, gezeigt und Vereinfachungen der Theorie fiir bekannte 

Spezialfdle ertirtert. 

TEPMOAHHAMHKA B3AHMOCBII3AHHbIX IIPOUECCOB IIEPEHOCA TEIUIA, 
MACCbI A HMIIYJIbCA C KOHEsHOR CKOPOCTbIO PACIIPOCTPAHEHHJI BOJIHM. 

II - IIPMMEPbI lIPEOEPA30BAHBfl IIOTOKOB R CHJI 

AHnOTaUllR-C nOMOLubm pa3pa60TaHHo8 B YaCTB 1 HaCTOKIIt& pa60TbI [l] Teopuu IIOA~O~HO 
WCJIeAytOTCRJIHHeiiHbIe IIpeO6pa30BaHHx TepMOAHHaMWieCKHX nOTOKOB li CPU, AJIll B3aL,MOCBI(3aHHbIX 

IIpOIIeCCoB IIepeHOCa MaCCbI W 3HeprW, IIpOTeKaIOuluX C KOHe'iHOti CKOpOCTblO Co. PaCCMaTpHBa,OTC,, 

npeo6pa3oBaHHa, XOpOIIIO W3BeCTHbIe Ii3 KJIaCCWieCKOii TepMOAUHaMHKH HeO6paTaMbIX npoueccos. 

nOJIyW?HbI pa3AWIHbIe HeOH3arepOBCKW ~HOMeHOJlOWi’XKHC y&XiBHCHHX U OCHOBHaS CBCTCMa runep- 

6onunectoix ypaBHeHH&(52), (53),onacbIBa1ouue MHOrOKOMnOHeHTHyIo Aai$~ysmo Tenna. noKa3aHa 
06IIIHOCTb TepMOAWHaMHqeCKOrO nOAXOAa, OCHOBaHHOrO Ha TaK Ha3bIBaeMOfi 3HTpOnm penarcaukiu, 

H o6cyLnatorca yIIpOIIIeH&iR TeOplrH Ha H3BCCTHbIe YaCTHbIe cnysae. 


